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SUMMARY 

An algorithm for the solutions of the two-dimensional incompressible Navier-Stokes equations is presented. 
The algorithm can be used to compute both steady-state and time-dependent flow problems. It is based on 
an artificial compressibility method and uses higher-order upwind finite-volume techniques for the convec- 
tive terms and a second-order finite-volume technique for the viscous terms. Three upwind schemes for 
discretizing convective terms are proposed here. An interesting result is that the solutions computed by one 
of them is not sensitive to the value of the artificial compressibility parameter. A second-order, two-step 
Runge-Kutta integration coupling with an implicit residual smoothing and with a multigrid method is used 
for achieving fast convergence for both steady- and unsteady-state problems. The numerical results agree 
well with experimental and other numerical data. A comparison with an analytically exact solution is 
performed to verify the space and time accuracy of the algorithm. 

KEY WORDS Finite-volume method Multigrid method Incompressible Navier-Stokes equation 

1.  INTRODUCTION 

Numerical solutions to the incompressible Navier-Stokes equations are in greater demand than 
ever before as the field of computational fluid dynamics becomes more important as an engineer- 
ing tool. An efficient code is the key to developing a useful tool for flow analysis. Therefore, there 
is a continuing interest in finding solution methodologies which will produce results using the 
least amount of computing time and CPU memories. This is particularly true for problems with 
a high Reynolds number. 

The algorithm is based on an artificial compressibility approach, which has been used 
successfully by a number of other auth0rs.l -3 The advantages of using artificial compressibility 
are that it directly couples the pressure and velocity fields at the same time level, and produces 
a hyperbolic-dominated system of the equations. Since the equations are hyperbolic-dominated, 
some of the upwind finite-volume schemes which have recently been developed for the compress- 
ible Euler and Navier-Stokes equations by a number of  author^^,^ can be utilized. From 
a theoretical point of view, the amount of artificial compressibility parameter /I seems to be 
arbitrary and can be chosen at will in the differential equation level, or in the difference level when 
central difference is used. But in upwind schemes, the upwind difference is directly related to the 
eigensystem of the problem and is strongly affected by the choice of B. In this paper, we investigate 
three different upwind schemes to demonstrate the effect of the choice of /I. The key result from 
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this work is that the numerical results computed by one of these schemes are almost independent 
of the value of 8. For the time integration, we use an explicit two-step Runge-Kutta time 
integration with an implicit residual smoothing. To improve the convergence speed of the scheme, 
we include a multigrid method in the numerical procedure. Trial results showed that our scheme 
is accurate and efficient and can compete with other implicit schemes coupling with multigrid 
techniques. An adaptive grid generation is included in the numerical method to achieve more 
accurate results under coarser grid systems. 

In the following sections, details of the artificial compressibility method and its use in solving 
the incompressible Navier-Stokes equation for both steady- and unsteady-state problems are 
given. Three upwind finite-volume formulations are given and compared with each other by 
a standard test problem-cavity flow. Details of €he boundary condition procedures are also 
included. The numerical examples include a driven cavity flow which serves as a standard test 
case, flow through a backward-facing step, inviscid flow past a circular cylinder and viscous flow 
past a circular cylinder. The numerical results showed good comparisons with experimental and 
other numerical data. Finally, a comparison with an analytically exact result is then performed to 
verify the space and time accuracy of the algorithm. 

2. NUMERICAL FORMULATIONS 

2.1. Governing equations and artijicial compressibility 

artificial compressibility is 
The conservative, integral form of the steady incompressible Navier-Stokes equations with 

where 

a=[$), F’=(~:;P) ,  G = [ v 2 F p ) ,  @=(!), 
in which ZZ is the domain, r is the boundary of 0, n is the outer unit normal and dl is the arc length 
along the control surface. Q represents the vector of conservation variables. The second term on 
the left-hand side of equation (1) is the inviscid flux vector and the right-hand side of equation (1) 
is the viscous flux vector. The p and (u, v)  are the pressure and the Cartesian velocity, fl  ( f i>O) is 
the artificial compressibility parameter and Re, is the Reynolds number corresponding to the 
free-stream velocity. 

Equation (1) has been non-dimensionalized with 

where v is the viscosity parameter. The subscript ‘ref’ denotes the reference condition, the overbar 
denotes the physical variable with dimensions and L denotes the reference characteristic length. 

2.2. Space discretization: jinite-volume formulation 

We assume that the two-dimensional domain R can be discretized into a group of quadri- 
wlaterals (Ki, j } .  The vertices, barycentres and edges of the quadrilateral Ki , j  are denoted by 
Vi* 112, j *  1 ~ 2 ,  Ci, j and eii  112, j ,  ei, ji 112, respectively. In each quadrangle Ki, flow variables are 
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stored at the barycentre Ci, and flow conservation is enforced on the boundary C ~ K , , ~  If we 
assume that the grid mesh is geometrically time-invariant and the flow variables stored at the 
barycentre Ci, are an area average of the integrated flow variables in the quadrilateral K i ,  j ,  then 
equation ( 1 )  can be written as 

where Ai, is the area of K i ,  and Ti, = dKi, 

edges of K i ,  j: 
To evaluate the first term on the right-hand side of (2), we sum all the flux vectors on the four 

irZ, ,(F, G ) .  ndl- hi- 1/2. j l  ei- 1/2, j l  +hi+ I /Z,  j l  ei+ I/Z, j l  +hi, j -  1/2 I ei, j -  1/2 I +hi, j +  112 I ei, j +  112 I 7 ( 3 )  

where hi+ and 
I ei+ 1/2, I is the length of the edge ei+ 1/2, j .  

using an upwind scheme, it is necessary to have two fluid dynamic 
states, Qk+ 1,2, and Qf+ The states Qf+ 1/2, and Qf+ 112, are interpolated from the cell- 
centred states by means of the MUSCL (Monotonic Upstream Schemes for Conservation Laws) 
type  scheme^.^. They can be expressed as 

is the numerical approximation for the flux associated with the edge ei+ 

In order to evaluate hi+ 

and 

(4) 

where the non-uniformity of cell sizes is taken into account in ai, j ,  b ,  j ,  ci, j.6 Let li,j represent the 
width of cell Ki,j in the i direction; then 

1 1 
Qf+ 1/2, j = Qi,j  + ai,j (ci.j-2Kbi.j) (Qi.j- Qi-  I ,  j )  +--(I + 2 K b i , j )  (Qi+ 1, j -  Qi, j)  9 [ Ci, j  

4, j a .- 
L'- li+ l,j+ 2 4  j + l i  - 1 , j  ' 

1i.j + Ii - I ,  j 
1.1 l i , j + l i + I , j  c .  .= 

For a uniform mesh, they become 

then (4) becomes 

and 
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The value of K determines the type of difference scheme: K =  - 1 yields a one-sided upwind 
scheme; K = *  yields a third-order upwind-biased scheme; IC= 1 yields a central difference scheme. 
For the calculations in this paper, a value of I C = ~  was used. 

Then the numerical flux at an interface is written as 

hi+I/z,j=h(Qf+1/2,jr Q!+1/1/2,  j )  

=t {F(Qf+ 1/2, j)nx + G(Qf+ 1/2, j)ny + F (Q?+ 1/2 ,  j )  nx + G(Q!+ 1/2, j)ny - xi + 1 / 2 j  (Q!+ l jz ,  j - Q f +  1/2, j ) } .  

(7) 
Here, we used two local Lax-Friedrichs monotone flux methods and the Roe’s approximate 
Riemann solver to define the value cli+ l / 2 . j :  

scheme I :  local Lax-Friedrichs monotone flux i 

m i + l / z , j =  maxi I U ~ I  + J [ ( u ~ ) ’ + B I ~  I u , R I + J c ( u ~ R ) ~ + P I ~ .  (8) 
scheme 2: Roe’s approximate Riemann solver 

where L and R are the left and right eigenmetrics of the Jacobian matrix A at the Roe averaged 
values. For details of L, R and A, please see Reference 2. 

scheme 3: local Lax-Friedrichs montone flux ii 

ai+l / z , j= max(IU,LI, I U,RI,E), ~=0.01-0.001, (10) 
where Un=~i+ l /Z , jn ,+v i+ l i z , jn ,  is the contravariant velocity normal to the edge ei+ljz.  The 
value o! is selected as the minimum one to give a scheme where the Lax-Friedrichs monotone flux 
is stable and independent of the value of p. The numerical results also show that this scheme is 
better than schemes 1 and 2 (see Section 3.1). 

We also use the finite-volume discretizations to compute the viscous terms. Since the viscous 
flux components are functions of the velocity gradients, we have to estimate appropriate values of 
these gradients on the cell faces. A general procedure, valid for an arbitrary control in two and 
three dimensions, can be derived by application of the divergence theorem, but for a non-uniform 
grid system, one needs to be very careful about truncation errors. One can see References 7 and 
8 for the derivations of the viscous terms and the relative error analysis. Here, for completeness, 
we give the formulation of the viscous terms in a quadrilateral K i ,  (see Figure 1) as 

$r (v 4) * d l -  c (@I? - 4 P) [(AY1 2 f (Ax  12 ) 2 1 / J e  + ( 4 2  - 41 ) c - A x P E  Ax12 - A Y P E  b y 1 2  l i J e  

+(4w - 4 P )  c(AY43)2 +(Ax34)21/Jw +(44 - 43) c- AXPW AX34-AYpw AY34l/Jw 

+(4s- 4 P )  C(AY 1‘d2 + (Ax14)21/J* + (4 1 - 44) c - AXPS Ax41 - AYE AY4, Y J S  ) ? (1 1) 

+ ( 4 N - $  P )  [I(AY23)’ + ( A x 2 3 ) 2 1 / J n  + (43-42) [ - A x P N  Ax23 - A Y P N  A Y Z 3 1 / J n  

where 
J e  = AY12 AxPE- AYPE AX123 J w =  AY43 AxWP-AYWP 

J n  = AYPNAx32 - AY32 AXPN > J ,  = AYSP Ax41 - AY41 AXSP.  (12) 

2.3. Time integrations: Runge-Kutta algorithms and residual smoothing 

discretize the remaining time derivative in equation (2). 
2.3.1. Steady-state ,formulation. An explicit multistage Runge-Kutta algorithm is used to 
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Figure 1 .  The quadrilateral control volumes on physical domain 

Define a residual as 

then, equation (2) becomes 

-- - Resij. dQi j 
d t  (14) 

In this paper, we used a second-order TVD Runge-Kutta time integration’. lo to integrate the 
ODE (14). The two-step Runge-Kutta time integration is as follows: 

QrP’ = Q?, j 9 

Q:,?; = Qr?; + Ati, Resi, j(QiP,!), 

Qi:,! = Q$:] + Ati, Resi, j(Qi:,!), 

QY,; = 0.5 (Qipj’ + Q??). 

We define 

&,j Cmax CFLi,j= 
Iei,jImin ’ 

where I ei,j I min=min( lei+ 1 /2 , j  I) I ei- l / Z , j l >  lei,j+ 1/21> I ei,j- I / Z  I), and 

ci + 1j2, j = max I JC (ub ) + B I 9 J II ( uf ) + BI I % 

u n  = ui+ 1/2, j n x  + ui + 1 /2 , j  n y  7 

Cmax= max(Ci+l/z,j, Ci- 1/2,j,  Ci,j+ 1 / 2 3  Ci,j-1/2). (17) 

At this moment, the whole scheme is stable for Courant number CFL,, Q 1. For this reason, we 
apply the implicit residual smoothing method in our scheme to reduce the CFL number 
constraint. 
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2.3.2. Time-accurate formulation. We apply the Crank-Nicolson method to the original 
incompressible Navier-Stokes equation, and then use pseudo-time z and the artificial compress- 
ibility method to solve the time-accurate problems. Now we assume that Q" at the nth time step 
was known. As in Section 2.3.1, we define a residual as 

At 
Re$: * = Q?? 1.1 -Q?.- 11 - [Res. r j  .(Q"+' ) + I d  Resij(Q")I, (18) 

with 
I d  = diag (0,1,1). 

Then use the two-step Runge-Kutta time integration (1 5) to solve the following ordinary 
differential equation to reach a steady-state solution which is the (n  + 1)th time step solution, 
Qn++ 

dQ;;" 
dz 

-- - Re$ . 

2.3.3. Implicit residual smoothing. For simplicity, we use Resi,j to represent both Resi,j (for 
(for unsteady problems). The implicit residual smoothing step steady-state problems) and 

replaces Resi,j by as follows: 

(1 -~,S,2)(1 -&,a:) Ati,j Resg;w(Qi,j) = Ati,j Resi,j(Qi,j), (20) 

where S: and 6; are the symmetrical, central operators which approximate the second derivatives 
in the i and j directions and E ~ ,  E~ are the corresponding smooth coefficients. 

Linear stability analysis has shown that the Runge-Kutta scheme with implicit residual 
smoothing may be made unconditionally stable provided that E is sufficiently large.g* l1 For 
example, in one dimension 

&> "( -)2-1] CFL 
4 CFL* 

gives a scheme that is unconditionally stable, where CFL* is the stability limit of the CFL number 
of the TVD Runge-Kutta scheme without smoothing. In two dimensions different values of E are 
often used in each grid direction. If a constant value of E is chosen based on the largest value of 
CFL/CFL*, the scheme can remain stable for large CFL. For example, if we take E equal to 0.5, 
the CFL number can be chosen to be J(3). In this paper, we take CFL=0.8 without residual 
smoothing and CFL = 1.6 with residual smoothing (~=0.5).  

2.4. Multigrid methods 

To improve the convergence speed of the scheme, we introduce a multigrid method to the 
explicit two-step Runge-Kutta scheme with/without implicit residual smoothing. As has been 
noted by Holl" and J a m e ~ o n , ~  multigrid time stepping methods also expand the domain of 
dependence of the discrete scheme in a way that corresponds to signal propagation in a physical 
system. This allows a large effective time step to be attained by a multigrid cycle without the need 
of introducing an implicit time stepping scheme. 

The operation of transfer of function from fine to coarse grids is called restriction, and that from 
coarse to fine grids is called prolongation. The restriction operator Rk, k -  transfers a fine-grid 
function Qk to a coarse-grid function Qk-l and the prolongation operator P k - l , k  transfers 
a coarse-grid function Qk- to a fine-grid function Qk. The definition of Rk, k -  is (see Figure 2) 

(22) 
A8120 Qk, a +A2340 Qk, b + A4560 Qk, c + A6780 Qk, d 

A13J7 
Qf!, =Rk,k-tQk-i = 
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L 2 

Figure 2. Restriction with area-weighted averages 

It is important that the solution on the coarser grid be driven by the residual computed on the 
fine grid, so a residual forcing function is defined as 

Sk - 1 = c Rest - ReSk - 1 (Qp! ) , 

where Resk is the residual on the kth grid level and 

cResk=A8120 Resk,a+A2340 Resk,b+A4560 Resk,c+A6780 Resk,d. 
The residual used to drive the corrections on the coarser grid is then given by 

- 
Rest"' k -  1 = ReSk-,(Q',"_)+&-1 . 

Then the two-step TVD Runge-Kutta time integration scheme on one of the coarser grids must 
be reformulated as 

QF!l=Rk.k-i Q(kn) 
- 

QP! , = Qi0! + Ati, Res? , 

Q(k!l=Qr!l+Ati,j Res:?, , 
- 

Qk- n+ 1 = 0 . 5  (Q;! + Ql;"l 1)  . 

After corrections have been computed on the (k - 1)th coarser grid, the process is continued to the 
(k-2)th coarser grids in a similar manner. 

After corrections have been computed on the coarses grid, they are prolonged back to 
successively finer grids. We used bilinear interpolation to define the operator P k - 2 ,  k -  1. Let 
Q:- be the final value of Qk- resulting from both the correction calculated in the time step on 
the (k - 1)th grid and the correction transformed from the (k - 2)th grid; then 

Qk'- 1 = Qiz ! + P k -  2 ,  k - I (QL- 2 -QioJ 2 )  . (24) 

For the operator Pk-2, k -  1, we transform the conservative variable on the physical domain into 
the generalized co-ordinates (<, q); then we use bilinear interpolation in the computational 
co-ordinates. 



694 S-Y. LIN AND T-M. WU 

Figure 3. Bilinear interpolation of (xo, yo) from the four surrounding points 

2.5. Adaptive grid generation 

In this section, an adaptive grid method is used coupling the line-by-line equidistribution 
adaptive grid method of Dwyer and co-worker~'~* l4 with Jeng and Liou's averaging proced- 
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CResz  , QP) I Qim) 
Figure 4. A multigrid procedure with fixed V-cycles of three grid levels 

ure.” To apply their adaptive grid method, one needs to compute weighting functions to adjust 
the spacing of the grid system. Let Q be the computed solution on an original grid system (<, q). 
First, along a t: = ti grid line in the original grid system, the line-by-line adaptive grid method is 
applied to decide the weighting function wi(s), 

wi(s)s,,  = constant, 

where b is an adjustable parameter of grid adaptation and s and s,, are the arc length and the 
desired grid spacing along the grid line after adaptation, respectively. Similarly, along q = qj, 
we can decide the weighting function wj(s). For details of the adaptive grid procedure, see 
References 13- 15. 

2.6. Boundary conditions 

Upto now, the numerical algorithm has been developed, and the next most important aspect of 
solving a fluid dynamics problem is the proper implementation of boundary conditions. In this 
paper, we consider several different types of boundary conditions encountered in different 
physical problems. 

2.6.1. Solid surface boundary conditions. The solid surface boundary condition for inviscid 
flow is the no-penetration condition, i.e. the velocity component normal to the wall boundary is 
identically zero. The mesh system is shown in Figure 5,  where ‘1’ and ‘2’ represent the first and 
second point centres of the control volume above the wall, and ‘b’ is located at wall surface. Then 
the no-penetration condition is Vnb=O. Let Vt be the tangential component of the velocity in the 
direction tangential to the wall surface. A second-order extrapolation is used to compute V, at the 
boundary as follows: 

while ‘lib' denotes the distance between points ‘b’ and ‘1’ and ‘lI2’ denotes the distance between 
points ‘1’ and ‘2’ as shown in Figure 5. 
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Figure 5. Extrapolation of tangent velocity at wall boundary 

For steady inviscid flow, the pressure gradient in the normal direction at the impermeable solid 
surface can be written as 

where R is the radius of curvature. 
For viscous flow, the usual no-slip condition is applied, i.e. u = 0, u = 0. The pressure at the wall 

is obtained by setting the normal gradient of p equal to zero at the no-slip wall, i.e. dp/dn=O. 

2.6.2. Injiow and outpow boundary conditions. Characteristic boundary conditions are used in 
these boundary conditions.' For an inflow boundary, two eigenvalues of the A (see Appendix) are 
positive; then the inflow boundary condition is computed by two characteristic values from the 
free stream and one extrapolated from the interior. This can be written in terms of the left 
eigenvector L as 

112 113 ( l l lp+ 112U+~13u)freestream 

( j 2  1P + /2ZU + 123u) freestream [ ":: '1: '1; ] ["]boundary = [ ( / ~ I P +  1 3 2 ~  + /330) interior 

For the outflow boundary, only one boundary condition can be imposed, and we have 

( I l , p + 1 1 ~ u + E 1 3 ~ ) f a r - f i e 1 d  

(30) 
( / 3 1 p +  /3ZU + 1332)) interior 

3. NUMERICAL RESULTS 

In this section the results of the following laminar flow computations are presented: 

( 1 )  2D laminar flow inside a wall-driven cavity, 
(2) 2D laminar flow through a backward-facing step, 
(3) inviscid flow over a cylinder, 
(4) viscous flows with low Reynolds numbers over a cylinder, 
( 5 )  unsteady test case. 

In all the cases presented here, the results show that scheme 3 (equation (6)) is better than schemes 
1 and 2 in terms of accuracy and stability. It was found that the accuracy and convergence was 
quite sensitive to the value of f i  for schemes 1 and 2 but not sensitive for scheme 3. Concerning the 
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divergence-free flow condition for both steady- and unsteady-state calculations, we use the 
following convergence criterion on the pressure field: 

1 
M 

E(n)  = - C I p " + 1 - p " ( < & ,  

where M is the total number of grid points and the summation is taken over the grid points. In 
our numerical computations, E is taken as lo-' or 

Re = 100. grid no. 64*64 
1.0 

(4 

1 I "I\\ Ghia grid( 128'1'28) 
Scheme 1-beta = 1' 
Scheme 1 beta = 10 
Scheme 1 beta = 25 
Scheme 2 beta = 10 
Schese 3 beta _= fl 

-.- .- 

............................................. 0.2 -- 

0.0 1 I I I I I 

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 

U 

Re = 100. grid no. 64*64 
0.6 I 

Ghia grid( 128*128) I 
Scheme 1 beta = 1 
Scheme 1 beta = 10 
Scheme 1 beta = 25 
Scheme 2 beta = 10 

-.-.-.-__ 

> 
0.0 y \ 

I 

0.0 0.2 0.4 0.6 0.8 1.0 
(b) X 

Figure 6. (a) Comparison of the velocity u along a vertical centreline. (b) Comparison of the velocity u along a horizontal 
centreline 
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3.1. 2 0  laminar flow inside a wall-driven cavity 

The laminar incompressible flow in a square cavity whose top wall moves with a uniform 
velocity in its own plane has served over and over again as a model problem for testing and 
evaluating the numerical scheme. The boundary conditions for (u, u) are u = v = 0 everywhere 
except on the top lid, where u = 1, v = 0. We specify the Neumann boundary condition aplan = 0 at 

RE = 100. ADAPTIVE GRID (64*64) RE = 400. ADAPTNE G m  (a*@) 

. , , , . .  
0.0 0.1 0.2 0.1 0.t 0.5 0.6 0.7 0.8 0.9 ' ( . O  0.0 0.1 0.2 0 . 3  0.1 0.5 0.6 0.7 0.8 0.3 1.0 

(b) 

RE = 1000. ADAPTIVE,' GRID (128*128) 

(4 
Figure 7. Adaptive grids for Re= 100,400 and 1000 
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the wall. The Reynolds numbers considered are 100,400 and 1OOO. In each case u= 1, u = O  is 
taken as the initial guess. The computational results of the present study are compared with those 
of Ghia et u1.,l6 who used a multigrid finite-difference method for the streamline-vorticity 
formulations with uniform fine (129 x 129) grid points for Re< 3200 and 257 x 257 grid points for 
Re 2 5000. 

First, we illustrate the effects of the artificial compressibility coefficient /?. Figures 6(a) and q b )  
show respectively, the velocity u along a vertical centreline and the velocity u along a horizontal 
centreline through the geometric centre of the cavity. The numerical results by scheme 1, with 
j= 1,lO and 25, show that the performance of this scheme is sensitive to the value of j. The 
overall results computed by scheme 3 are not sensitive to the value of j. We conclude that scheme 
3 is the most accurate of the three schemes. 

Second, we consider the effects of the proposed adaptive grid method. Figures 7(a)-7(c) show 
the adaptive grids for different Reynolds numbers. They vary smoothly and stretch well with the 
structures of flows. For Re =400, Figures 8(a)-8(d) indicate that the numerical results with the 

RE = 400. UNIFORM GRID 1128*128) RE = 400. UNIFORM GRID (128'128) 
1.0 

0.8 

0.6 

* 
0.4 

0.2 

0.0 
-0.4-02 0.0 0.2 0.4 0.6 0.8 1.0 

1.0 

0.8 

0.6 
% 

0.4 

0.2 

0.0 

-0.6 -1 
0.0 02 0.4 0.6 0.8 1.0 

U X 

RE = 400. ADAPTIVE GRID (64' 

1 L .4-02 0.0 0.2 0.4 0.6 0.8 

U 

RE = 400. ADAPTIVE GRID (64%) 
0.4 > 

I ,., I 

I V I  

-0.6 
0.0 02 0.4 0.6 0.8 LO 

X 
Figure 8. (a) and (c) Comparison of the velocity u along a vertical centreline. (b) and (d) Comparison of the velocity 

u along a horizontal centreline 
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RE = 1000. UNIFORM GRID (128*128) RE = 1000. UNIFORM GRID (128*128) 

1.0 

0.8 

0.6 

> 
0.4 

0.2 

0.0 
-0.4-02 0.0 0.2 0.4 0.6 0.8 1.0 

U 

RE = 1000. ADAPTIVE GRJD (128*128) 
1.0 

0.8 

0.6 

+ 
0.4 

02 

0.0 
I 

7 

0.4 

0 2  

0.0 

-0.2 

-0.4 

-0.6 1 

0.0 0 2  0.4 0.6 0.8 1.0 

X 

RE = 1000. ADAPTIVE! GRID (128*128) 

. .  
-0.6 I 1 1 1 

0.0 02 0.4 0.6 0.8 
X 

0 

Figure 9. (a) and (c) Comparison of the velocity u along a vertical centreline. (b) and (d) Comparison of the velocity 
u along a horizontal centreline 

adaptive grid 64 x 64 are better than the results with the uniform grid 128 x 128. Figures 9(a)--9(d) 
also show the same trend for Re= 1OOO. 

Finally, we compare the convergence rates of scheme 3 with/without implicit residual smooth- 
ing in one-, two-, three-, four- and five-level grid systems. The test case chosen simulates the flow 
for Re= 100 with 64 x 64 uniform grid and adaptive grid. The CPU times quoted here are for the 
HP-720 workstation. Summaries of the performance are given in Tables I-IV. For the single grid, 
the results show that the scheme with the implicit residual method gives an average saving of 39% 
on the uniform grid and 50% on the adaptive grid. For the multigrid method, the results show 
that the convergence rate is increased 16-20 times by using the four- or five-level grid. 

3.2. 2 0  laminar flow through a backward-facing step 

The geometry and boundary conditions are shown in Figure 10. The aspect ratio of the 
backward-facing step (h)  to the overall cross-sectional width is 1:2, and the total length in the 
horizontal direction is 32h. A fully developed parabolic velocity profile is prescribed at the inlet 
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Table I. The solutions converge to uniform 
grid (64 x 64) with the RK2 method 

~~ ~~~~ _ _ ~  
M Step CPU (HP) Ratio 

1 14325 31124 13.9 
2 4625 1068.3 4.8 
3 2050 492.9 2-2 
4 875 2245 1 .o 

Table 11. The solutions converge to uniform 
grid (64 x 64) with RK2 and implicit residual smooth- 

ing method 

M Step CPU (HP) Ratio 

1 6275 2054.8 14.9 
2 2250 638.3 4.6 
3 1050 323.9 2.3 
4 425 138.8 1-0 
5 450 138.3 1-0 

Table 111. The solutions converge to lo-’, adaptive 
grid (64 x 64) with RK2 

M Step CPU (HP) Ratio 

1 90 400 18 461.6 24.26 
2 26 900 7358.6 9.67 
3 13 375 3978.7 5.23 
4 11 150 3281.0 4.3 1 
5 2575 760.9 1 *o 

Table IV. The solutions converge to lo-’, adaptive 
grid (64 x 64) with RK2 and implicit residual smooth- 

ing method 

M Step CPU (HP) Ratio 

1 33 225 9 166.3 20.52 
2 11 850 4178.9 9-35 
3 4675 1739.8 3.89 
4 1200 454.3 1.02 
5 1150 446.8 1 .o 

boundary. The results are compared with the experimental data of Armaly et al.” and the 
numerical simulation of Mansour,” Ghia” and Shon.zo We used the stretched 64 x 64 grid (see 
Figure 11) with fine mesh near the wall and near the inlet boundary. The Reynolds numbers 
selected were 100, 200, 300, 330, 400, 500, 600, 700 and 800. Here, the Reynolds number 
(Re = V2h/v )  is based on the bulk velocity at the inlet boundary and the cross-section width of the 
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Figure 11. Stretched grids of 2D laminar flow through a backward-facing step 

Re = 200 

Re = 400 

Re = 600 

Re = 800 

Figure 12. Pressure contours of 2D laminar flow through a backward-facing step 
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whole domain as defined in Armaly et a l l7  Pressure contours are shown in Figure 12. As the 
Reynolds number increases, the position of the point with maximum pressure moves down- 
stream. Figure 13 represents streamline contours for selected Reynolds numbers. The recirculat- 
ing zone behind a backward-facing step becomes larger as the Reynolds number increases, and 
another recirculating zone near the upper wall is generated when the Reynolds number is greater 
than 330 according to our computations with this grid mesh. Comparisons with experimental 
data" and other numerical  result^'^-'^ are shown in Figure 14, where x1 is the reattachment 
location of the primary vortex, x2 is the separation location of the secondary vortex at  the top 
wall and x3 is the reattachment location of the secondary vortex. The reattachment length is well 
predicted except at  Re 2 600, probably because fluid flow then becomes three-dimensional. 

3.3. Inviscid cylinder flow 

Flow past a circular cylinder has been a rich source of fluid dynamic problems. The grid system 
used is 96 x 96 meshes for both inviscid and viscous flow computations (Figure 15). The total 
computational region extended to 20 times the radius of the circular cylinder. The characteristic 
inflow and outflow boundary conditions used are based on the sign of local normal velocity. We 
used a pressure boundary condition on the inviscid wall of aplan. Figure 16 shows a comparison 
of the pressure coefficients on the cylinder surface with an ideal flow solution for B = l O  and 
j?= 100. They agree well with the ideal flow. The pressure contours shown in Figures 17(a) and 

Re = 200 

Re = 400 

Re = 600 

Re = 800 

Figure 13. Streamline contours of 2D laminar flow through a backward-facing step 
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Figure 14. Comparison of reattachment lengths of 2D laminar flow through a backward-facing step 

Figure 15. Grid configurations for a circular cylinder 
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Figure 16. Su6ace pressure coefficient for inviscid flow over a cylinder 
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17(b) are symmetric. Again, all the results in this example indicate that the performance of 
scheme 3 is not sensitive to the value of B. 

3.4. Viscous cylinder flow 

Viscous flow past a circular cylinder has been extensively studied in the last few decades. The 
flow will be separated somewhere near the cylinder surface. For Reynolds numbers less than 40, 
the separated flow is steady. In this work, we only simulate cylinder flows with Re=20 and 
Re=40. Figure 18 shows the distribution of the wall vorticity, which agrees well with the other 
numerical results.2’* 22 In Figure 19 the distribution of the pressure coefficient agrees well the 
experimental data” and other numerical results.2’* 22  

3.5. Time-dependent test case 

The accuracy of the present method has been evaluated by solving a test problem for which an 
analytical solution is available as a function of time, space and Reynolds number. The Taylor 
problem was used,24. 25 the solution of which is given by the following equations: 

u = -cos(2ax) sin (27ty)e‘- 2’Re)(4n2)1 , 

u = sin(2xx) cos (27ty)e‘- 2/Re)(4n’)r , 

p = - 0.25 [cos (47tx) + C O S ( ~ X ~ ) ] ~ ( - ~ ’ ~ ~ ) ( ~ ~ ’ ) ~  . 
The Navier-Stokes equations are solved numerically by the present method in the unit square 

domain ([0, 13’) and in the square domain ([0.25,0.75]z). Figures 2qa) and 2qb) show the exact 
pressure and vorticity contours and Figures 21(a) and 21(b) show the computed pressure and 
vorticity contours. The evolution of the error as a function of the mesh space Ax, the Reynolds 
number and the time step At is given in Figures 22(a)-22(d). 
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X 

Figure 17. Pressure contours for inviscid flow over a circular cylinder. (a) p= 10, (b) p= 100 
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The space accuracy is found to be higher than second order, as shown in Figure 22(a). The error 
as a function of the Reynolds number remains small up to Re = lo9 (Figure 22(b)). The temporal 
accuracy is found to be complicated. In the large computation domain ([0, 11') the order of 
accuracy is one and a half (Figure 22(c)). On the other hand, in the small computation domain 
(C0.25, 0.751') the overall order of accuracy is higher than two (Figure 22(d)). 
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Figure 18. Wall vorticity for viscous flow over a cylinder 
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Figure 19. Surface pressure coefficient for viscous flow over a cylinder 
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Figure 20. The exact solutions of the example in Section 3.5 with Re= IOOO, t =  1-0: (a) pressure contours; (b) vorticity 
contours 

(4 (b) 

Figure 21. The numerical sotutions of the example in Section 3.5 with Re=IOOO, t =  1.0 Ax= &, At=O.O1: (a) pressure 
contours; (b) vorticity contours 
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Figure 22. (Example in Section 3.5): (a) the error as a function of &, Ar = 0-01, Re= lO00, r=l .@ (b) the error as 
a function of Re; A x =  A, At = 001, t=  1.0; (c) the error as a function of Ar in the large domain; Re=5 ,  Ax = A. t =06 

(d) the error as a function of Ar in the small domain; Re = 5, A x =  A, t = 0.6 

4. CONCLUSIONS 

An algorithm for computing steady- and unsteady-state solutions to the incompressible 
Navier-Stokes equation has been presented. The artificial compressibility method allows the 
equations to be solved as a hyperbolic-dominated system in pseudo-time. The use of upwind 
difference makes the scheme stable. With the use of two-step Runge-Kutta time integration 
coupling an implicit residual smoothing and a multigrid method, the code can be run with large 
time steps and convergence is very fast. Adaptive grid generation is included in the numerical 
procedure to achieve more accurate results with coarser grid systems. Comparisons of the 
computational results with some experimental data and other numerical results showed good 
agreement. The relationship between artificial compressibility and upwind difference was dis- 
cussed. The overall results show that the performance of scheme 3 is not sensitive to the value of 
artificial compressibility. The authors are also investigating a series of unsteady flow simulations. 
Further advances in the convergence speed of the algorithm will still be very useful in increasing 
the usefulness of this code as a design tool. 

ACKNOWLEDGEMENTS 

We would like to thank the reviewers for some valuable suggestions. We also thank Professor 
Y. N. Jeng for providing an adaptive-grid-generation program. The authors would like to 



710 S-Y. LIN AND T-M. WU 

acknowledge support from IAA. This work is partially supported by the National Science 
Council of R.O.C. under Contract No. NSCS 1-0401 -E-006-606. 

REFERENCES 

1. A. J. Chorin, ‘A numerical method for solving incompressible viscous flow problems’, J. Comput. Phys., 2, 12-26 

2. D. Pan and S. R. Chakravarthy, ‘Unified formulation for incompressible flows’, AIAA Paper 894122  1989. 
3. S. E. Rogers, D. Kwak and C. Kiris, ‘Numerical solution of the incompressible Navier-Stokes equations for 

4. B. Van Leer,’Toward the ultimate conservative difference scheme V, a second-order sequel to Godunov’s scheme’, 

5. S. Osher and S. Chakravarthy, ‘Very high order accurate TVD schemes’, ICASE Report No. 84-44, 1984; also The 

6. D. Y. Yeh and J. C. Cheng, private communication. 
7. M. Vinokur, ‘An analysis of finite-difference and finite-volume formulations of conservation laws’, J. Comput. Phys., 

8. Y .  N. Jeng and J. L. Chen, ‘Truncation error analysis of the finite volume method for a model steady convective 

9. A. Jameson, ‘Multigrid algorithms for compressible flow calculations’, in Multigrid Method I I ,  Lecture Notes in 

10. S. Y. Lin, T. M. Wu and Y. S. Chin, ‘Upwind finite-volume method with a triangular mesh for conservation laws’, 

11. P. Jorgenson and R. Chima, ‘An unconditionally stable Runge-Kutta method for unsteady flows’, AIAA Paper 

12. M. G. Hall, ‘Cell vortex multigrid schemes for.solution of the two dimensional Euler equations’, I M A  Con$ on 

13. H .  A. Dwyer, R. J. Kee and B. R. Sanders, ‘Adaptive grid method for problems in fluid mechanics and heat transfer’, 

14. H. A. Dwyer, ‘Grid adaptive for problems in fluid dynamics’, AIAA J., 22, 1705-1712 (1984). 
15. Y. N. Jeng and S. C. Liou, ‘Modified multiple one-dimensional adaptive grid method’, Numer. Heat Transjer, 15, 

16. U. Ghia, K. N. Ghia and C. T. Shin, ‘High-Re solutions for incompressible flow using the Navier-Stokes equations 

17. B. F. Armaly, F. Durst, J. C. F. Pereira and B. Schonung, ‘Experiment and theoretical investigation of backward- 

18. N. N. Mansour and P. Moin, ‘Computation of turbulent flow over a backward-facing step’, 4rh Symp. on Turbulent 

19. K. N. Ghia, G. A. Osswald and U. Ghia, ‘Analysis of incompressible massively separated viscous flow unsteady 

20. J. L. Sohn, ‘Evaluation of FIDAP on some classical laminar and turbulent bench-marks’, Int. j. numer. methodsjuids, 

21. G. Martine% These Docteur-lngenieur I. N .  P.  Toulouse (in German), 1979. 
22. B. Fornberg, ‘A numerical study of steady viscous flow past a circular cylinder’, J. Fluid Mech., 98, 819-855 (1980). 
23. A. S. Grove, F. H. Shair, E. E. Pertersen and A. Acrivos, ‘An experimental investigation of the steady separated flow 

24. G. K. Batchelor (Ed.), The Collected works o f G .  I .  Taylor, Vol. 2, Cambridge University Press, Cambridge, 1960. 
25. M. Braza, P. Chassaing and H. H. Minh, ‘Numerical study and physical analysis of the pressure and velocity fields in 

( 1967). 

steady-state and time-dependent problems’, AIAA Paper 89-0463, 1989. 

J .  Comput. Phys., 32, 101-136 (1979). 

I M A  Volumes in Mathematics and its Applications, Vol. 2 ,  Springer, Berlin, 1985, pp. 229-274. 

81, 1-52 (1989). 

equation’, J. Comput. Phys., 100, 64-76 (1992). 

Mathematics, Vol. 1228, 1985, pp. 166201. 

J. Comput. Phys. (to appear). 

89-0205, 1989. 

Numerical Methods for Fluid Dynamics, Reading, 1985. 

AIAA J . ,  18, 1205-1212 (1980). 

241-247 (1989). 

and a multigrid method’, J. Comput. Phys., 48, 387411 (1982). 

facing step flow’, J .  Fluid Mech., 127, 473496 (1983). 

Shear Flow, Karlsruhe, Germany, 1983. 

Navier-Stokes equations’, Int. 1. numer. methods Juids, 9, 1025-1050 (1989). 

8, 1469-1490 (1988). 

past a circular cylinder’, J. Fluid Mech., 19, 60-80 (1984). 

the near wake of a circular cylinder’, J. Fluid Mech., 16, 79-130 (1986). 


